

Global Standards for the Microelectronics Industry

Get it right the first time! How to test for compliance to the LPDDR4 JEDEC Specification

Barbara Aichinger Vice President FuturePlus Systems Corporation Represented in China by Fullwise Technologies

JEDEC Mobile & IOT Forum

Copyright © 2016 FuturePlus Systems

LPDDR4 Specification

- The JEDEC LPDDR4 Specification is a *DRAM* specification
- There is no specification for the memory controller
 - Which is what you need to test!
- There is no LPDDR4 Compliance Specification

Don't Worry! Help is on the way! JEDEC STANDARD

Low Power Double Data Rate 4 (LPDDR4)

JESD209-4A (Revision of JESD209-4, August 2014)

NOVEMBER 2015

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

What to test on your LPDDR4 design?

- That the LPDDR4 DRAM is being treated properly
 - Electrical
 - Signal Integrity on all signals
 - Receiver Eye size
 - BER Bit Error Rate
 - Protocol
 - Protocol Checks
 - Power up /power down states
 - Performance

LPDDR4 Command/Address Rx Mask

 Do you know the difference between the 'Mask' and the Data Valid Eye?

Mask: The area (voltage and time) where no signal may encroach in order for the DRAM to successfully capture

Rx Data Valid Eye: Is the voltage/time opening measured at the receiver

Figure 107 — CA Receiver(Rx) mask

DQ Data Rx Mask

Figure 114 — DQ Receiver(Rx) mask

Measuring System Compliance

Mask center time calculated separately for each signal

Extrapolated eye must **<u>not</u>** touch the mask

LPDDR4 Bus Level Signal Integrity Insight

- A quick way to get bus level signal integrity insight is to use a logic analyzer
 - With high speed `scanning' capabilities
- All signals can be observed and compared to each other
- Signals with problems can be identified quickly
 - An oscilloscope then used on the problem signals

Signal Integrity Insight: Cross Talk on ADDRESS

Slide Courtesv of

Signal Integrity Insight: LPDDR4 DQS

Clean DQS strobes on BGA interposer for both Read/Write

Slide Courtesy of

Signal Integrity Insight: DDR4 3500 Mb/s Read Scans

Signal Integrity Insight: Incorrect Signal Transition

Slide Courtesv of

Looking for Protocol Violations

- What is a Protocol violation?
 - The specification has rules about:
 - How close in time transactions can be to each other
 - Example: Time between an ACTIVATE and a Read or Write can be no closer than tRCD
 - How far apart transactions can be from each other
 - Example: Time between two REFRESH commands cannot be greater than 9*tREFImax
 - The ordering of transactions
 - Example: A Read or Write command must be preceded with an ACTIVATE command to the selected ROW

Example: Protocol Violation Average Refresh Rate

Slide Courtesy of

KEYSIGHT

Example: Protocol Violation Write to close to a PREA

State Listing Violations Setup								Last cycle of a 4					
Time Deltas Trigger - Trigger - 0 nsecs									cycle Write				
	-	# T	0.1444	DAMALIE		110.11		DC	Vision	C 100	C		
	104	# 1.252 ns	Bank Address	0	0 Row Address(RA)	MAddr 0		PC	Violation	DES	DES		Command
	105	1.252 ns	0	0	0	0	10			DES	WR-1		e e maria
	106	1.252 ns	0	0	0	0	4C			DES	WR-1		
MI	107	1.252 ns	4	1	U A178	4	C8 3D4			DES	CAS-2		
	109	1.252 ns	2	0	0	32	300			DES	DES		(Time between equals)
	110	1.252 ns	5	0	0	35	200			DES	DES		Inno botween equale
	111	1.252 ns	0	0	0	0	0			DES	DES		
	112	1.252 ns	0	0	0	0	0			DES	DES		
	114	1.252 ns	0	0	0	0	0			DES	DES		
	115	1.252 ns	0	0	0	0	0			DES	DES		8+32/2+15+1
	116	1.252 ns	0	0	0	0	0			DES	DES		
	117	1.252 ns	0	0	0	0	0			DES	DES		= 40 clocks
	119	1.252 ns	0	0	0	0	0			DES	DES		
	120	1.252 ns	0	0	0	0	0			DES	DES		Massurament is 38
	121	1.252 ns	0	0	0	0	0			DES	DES		Measurement is 50
	122	1.252 ns	0	0	0	0	0			DES	DES		
	123	1.252 ns 1.252 ns	0	0	0	0	0			DES	DES		CIOCKS. VIULATION /
	125	1.252 ns	0	0	0	0	8			DES	RD-1		
	126	1.252 ns	0	0	0	0	4C			DES	RD-1		
	127	1.252 ns	2	0	0	2	C8			DES	CAS-2		
	128	1.252 ns	3 0	1	A1/8	13	3D4 300			DES	CAS-2		
	130	1.252 ns	5	0	0	35	200			DES	DES		
	131	1.252 ns	Ō	0	Ō	0	0			DES	DES		PRFA closes the
	132	1.252 ns	0	0	0	0	0			DES	DE		
	133	1.252 ns	0	0	0	0	0			DES	5		hank If this
	134	1.252 ns	0	0	0	0	0			DES	DES		
	136	1.252 ns	0	0	0	0	0			DES	DES		honnono too
	137	1.252 ns	0	0	0	0	0			DES	DES		nappens loo
	138	1.252 ns	0	0	0	0	0			DES	DES		
	140	1.252 ns	0	0	0	0	0			DE.	DES		aulckly then the
	141	1.252 ns	0	0	0	0	0			JES	DES		
	142	1.252 ns	0	0	0	0	0			DES	DES		data may not he
	143	1.252 ns	0	0	0	0	0			JES	DES		
	144	1.252 ns	0	0	0	0	0		1413	DES	DES		writton proporty
M2	146	1.252 ns	o	Ő	ō	0	140	1	22	DES	PREA		willen property
310	147	1.252 ns	0	0	0	30	200			DES	DES		

Example: Protocol Violation tRCD ACTIVATE to close to a Read

WaveForm State List	Ing Mode Register Set	
Sync Notes	EVENT= 0 <-Trigger	Q
	10 nS	
Time	24 clocks_	
CKEO		
CKE1		
C50		
CS1		
Command R0	ACT ACT ACT DES	RD RD CAS CAS DES
Bank Address	tRCDmin = MAX(tRCD{nCK}, ROUNDUP((tRCD{ns}/tCk	{{ns})-0.025))
RAddr	4 ((18ns/ 625n	s)-0 025)
CAddr		
OPdata		
R0 RPS		
OP_CODE	<u>∕</u> 16	χ19 χD
CA CA	(1) (3)	2 (12)
EVENT		
PV		
ViolationID		5

LPDDR4 Violation Spreadsheet Made available by FuturePlus Systems

	Α	В	С	D	E	F	G	Н		[
4		Convert specs in time (ps) to clocks	(nCK)				#CK	ns		
5		ROUNDUP((tX/tCK) -0.025) in nCKs				1600 values	Α	В	<u>1600</u>	
6			JESD209-4A		tCK	1.25 ns			1.250	
7					RL	6, 10, 14, 24, 28, 32, 36			6	[
8				MR2 OP[5:3]	WL	4 , 6, 8, 10, 12, 16, 18			4	[
9					tDQSCK max	3500		3500	3500	[
10					tRPST	0.4, 1.4			0.4	[
11					BL	16, 32			16	[
12					tWPRE	1.8	1.8		1.8	
13										
14	tRFCpb	REFpb to REFab/ACT(same bank)/	tRFCpbmin = ROUNDUP((tRFCpb{ns}/tCK{ns})-0.025)	ns		4Gb		60	48	
15		REFpb(same bank) < tRFCpbmin				6Gb		90	72	
16						8Gb		90	72	
17		Table 35, section 4.17.1				12Gb		140	112	
18						16Gb		140	112	
19										
20	tRFCab	REFab to REFab/ACT/REFpb <	tRFCabmin = ROUNDUP((tRFCab{ns}/tCK{ns})-0.025)	ns		4Gb		130	104	
21						6Gb		180	144	
22		Table 35, section 4.17.1				8Gb		180	144	
23						12Gb		280	224	
24						16Gb		280	224	
25										
26	tRRD	REFpb to ACT < tRRDmin	tRRDmin = MAX(tRRD{nCK},	ns			4	10	8	
27		REF to REF < tRRDmin								
28										
29		Table 16, Sec 4.3								
30										
24	tRRD_AC	ACT to ACT < tRRD_ACTmin	tRRDmin = MAX(tRRD{nCK},				A	10	0	

Probing

- BGA interposer
 - Flying lead
 - Midbus
 - Cable connection
- Midbus
- Slot Interposer

Probing LPDDR4

using a BGA interposer with individual probe points

BGA probing with a scope

Photos Courtesy of KEYSIGHT

BGA Probing with a Protocol Analyzer

Photos courtesy of

Global Standards for the Microelectronics Industry

FuturePlus Systems

Power Tools for Bus Analysis

Midbus Footprint

Photos Courtesy of

KEYSIGHT TECHNOLOGIES

Probing LPDDR4 using a midbus footprint

Photos courtesy of

FuturePlus Systems

Probing LPDDR4

Using a BGA interposer with a cable connection to a Protocol Analyzer or Logic Analyzer

Photos Courtesy of

LPDDR4 Package on Package (PoP) Probing

Photos Courtesy of

LPDDR4 on a SODIMM

- Some applications looking at this
 No ECC
- Will use the same form factor as DDR4 SODIMM
- Slot interposer can be used for probing

Photos courtesy of

FuturePlus Systems

Equipment

Protocol Analyzer

Logic analyzer

Oscilloscope

Photos courtesy of Keysight Technologies and FuturePlus Systems

Summary for Success

- Put a robust validation and compliance plan in place for your product
- One that verifies the electrical and the protocol operation
- Plan your probing ahead of time so you can achieve success easily!

Contact Information

Barbara Aichinger Vice President FuturePlus Systems Corporation 15 Constitution Drive Bedford NH 03110 USA Barb.Aichinger@FuturePlus.com USA 603-472-5905 www.FuturePlus.com www.DDRDetective.com

Represented in China by Full Wise Technology www.FullWiseTech.com

